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ABSTRACT 
 
We model the evolution of income and fertility distributions over the course of economic 
development using an endogenous-growth framework where human capital is the engine of both 
income growth and income distribution. In our OLG setting, heterogeneous families determine 
fertility and human capital formation in children, and generations are linked through intra-family 
and inter-family interactions. We conduct simulations and regression analyses to test propositions 
concerning the behavior of inequalities in fertility and schooling attainments, as well as of three 
income inequality measures – family-income inequality, income-group inequality, and the Gini 
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I. INTRODUCTION 

 Using historical data from a number of developing and developed countries, Kuznets 

(1955, 1963) argued that income inequality first rises and then falls during a transitional 

development period. The literature following Kuznets developed in two main directions. The first 

tested his hypothesis against empirical data from many other countries.1  The second dealt with the 

development–inequality nexus theoretically as a causal relation going from either growth to 

inequality or vice versa.2  Both sets of studies have offered conflicting conclusions about the 

competing theoretical and empirical hypotheses. 

 One issue that received less attention in this literature is the comparative income inequality 

levels in the two phases of economic development that frame the transition phase, which we model 

in this paper as “stagnant equilibrium” and “growth equilibrium” steady states. Other observations 

also received little attention so far.  For example, our data in section V reveal a positive correlation 

between inequality in income and in schooling attainments. Furthermore, historical data indicate 

that fertility differences across income groups tend to be attenuating in the pre-takeoff phase as 

well as in advanced phases of development, while expanding over the transitional phase (see Coale 

and Treadway, 1986).  

 We attempt to bring together this broader evidence by developing a deterministic, 

endogenous-growth model with heterogeneous families, in which human capital is the key asset 

determining growth and the distribution of income, and families determine fertility and 

educational investments. Our model offers a dynamic extension of Becker’s (1967) deterministic 

model of income distribution, as well as a generalization of more recent work by Ehrlich and Lui 

(1991), Tamura (1991), Zhong (1998), and Ehrlich and Yuen (2000). We show that the behavior 

of income inequality over the transitional development phase can vary across different countries, 
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depending on the factors triggering the economic takeoff and the income-inequality measure used. 

Moreover, we offer new insights about the dynamic evolution of observed inequalities across 

families not just in income, but also in fertility and human capital investments over the course of 

development, including the pre- and post-transition phases.  

 Our model suggests that the relationship between income growth and income inequality is 

associative, not causal. Three main forces influence this association: a. interactions between 

overlapping generations within families, which enable continuous human capital formation in 

successive generations; b. heterogeneities in endowments and investment efficiencies across 

families, which affect the degree of inequality across families; and c. social interactions, which 

help attaining stable dynamic equilibria in the distributions of both income and fertility.3 

 Formally, we set up an OLG model of endogenous growth with finitely-lived individuals. 

Parents optimize on investments in the quantity and quality of children (in an extended version, 

savings can be introduced as well). Heterogeneities across families and social interactions enable 

us to derive equilibrium paths of income, schooling, and fertility distributions over three phases: 

a stagnant steady state, a perpetual-growth steady state, and a transition phase linking the two. 

By this approach we are also able to provide new insights about the “Kuznets hypothesis”. 

The observed association between the level and inequality of income is influenced partly by the 

factors determining the comparative inequality levels at the growth vs. stagnant steady state. The 

association is in a state of flux during the transitional phase. Specifically, we show that over this 

phase the income inequality path can assume a U shape, an inverted-U shape, or combinations of 

the two, with the inequality level ultimately rising, falling or staying the same, depending on the 

way heterogeneity sources are correlated across families, how different takeoff-triggers affect 

different family groups, and the inequality measure used. We derive three such measures as 
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endogenous variables: family-income inequality, income-group inequality, and the Gini 

coefficient. A major inference of our model is that regardless of the shape of the income inequality 

path over the transitional phase, the inequality paths of fertility and human capital investments are 

expected to exhibit an inverted-U shape with both tails converging on equality.  

 Section II introduces the model and its equilibrium solutions. In section III we derive 

equilibrium regimes and comparative dynamic implications, and in section IV we present 

simulated dynamic paths of our inequality measures. Section V then presents new evidence on 

fertility, schooling, and income distributions based on international panel data from 1950-98.  

II. THE MODEL AND EQUILIBRIUM SOLUTIONS 

A. The Economic Environment 

 To derive income and fertility inequality paths over the entire development process, we 

extend the deterministic representative-family, OLG model of endogenous growth in Ehrlich and 

Lui [EL] (1991) to a heterogeneous-family case that recognizes inter-family interactions as well. 

The Economy:  The economy is comprised of a fixed distribution of heterogeneous family groups 

of varying earning capacities, indexed in a decreasing order by i (i = 1, 2, 3…I). We implicitly rely 

on positive assortative mating within groups by their distinct sources of heterogeneity to maintain 

this fixed distribution over time, because if inter-group mating is allowed, and children inherit the 

average characteristics of their parents, human capital attainments would eventually converge in 

all families.4 Each agent in this economy lives through three periods: childhood (t-1), adulthood 

(t), and old age (t+1). All family-based decisions are made by young parents.   

Like Becker (1967), we focus on three objective sources of inherited heterogeneity: a. 

differences in ability (Ai); b. differences in income-yielding “endowments” ( H i), stemming from 

inherited social status, political power, or other personal assets; c. differences in 
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education-financing costs (θi). We generally do not allow for differences in preferences or external 

production technologies, since these need not be related to objective personal differences. 

Goods Production and Income: The economy is competitive and human capital is the sole asset. 

A young parent in family-group i possesses a production capacity ( H i+Hi
t), composed of a fixed 

inherited income-producing endowment ( H i), measured in units of human capital, and an acquired 

human capital stock, (Hi
t), attained through parental inputs.  Labor supply by each young parent is 

fixed in any period. We also assume for convenience that all consumer goods, including 

educational services, can be purchased. Under a linear and strongly additive production 

technology for all goods, aggregate income equals aggregate labor employment, or families’ 

actual production capacities in each period (see equation 1), Y = L, and the competitive firms’ 

zero-profit condition, π=Y-ϖL=0, yields a time-invariant real rental rate per unit of labor, ϖ =1, 

which also guarantees full employment. We initially abstract from any savings, so earnings are 

identical to income. In Appendix A, we allow for savings and show that our inferences concerning 

earnings inequality extend to income inequality as well.   

Human-capital production: The human-capital formation rule is given by: 

(1) Hi
t+1 = Aihi

t( H i+Hi
t)1-γ[( H 1+H1

t)(N1
t/Ni

t)]γ  ≡ Aihi
t ( H i+Hi

t)(Si
t)γ,   

where hi
t is the share of production capacity a young parent from family-group i (i = 1, 2,…I) 

invests in educating each child, H i and Hi
t are the parent’s respective endowed and attained 

human capital stocks, and N1
t/Ni

t is the ratio of the population shares of parents in family groups 

1 and i. Si
t denotes an inter-family, “social interaction” factor. Note that equation (1) becomes 

A1h1
t ( H 1+H1

t) if i = 1. 

 Equation (1) aims to capture two types of interactions within and across families: a. 

Persistent human capital formation can be sustained over time only if the older generation of 
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parents invests in the knowledge of the succeeding generation of children; b. Knowledge attained 

by agents with the highest earning capacity (family-1 members) has a spillover effect on all other 

families (see below). Human capital formation is thus perceived to be a social, as well as a private, 

process. Knowledge transmission is modeled as an exogenous process in our analysis, assuming that 

knowledge spillover effects cannot be fully internalized a priori.5 

 The intergenerational interaction is captured by the relationship between Hi
t+1 and Hi

t in 

equation (1). The inter-family interaction is defined by the term (Si
t)γ in equation (1), where Si

t ≡ 

[( H 1+H1
t)/( H i+Hi

t)][N1
t/Ni

t] ≡ Ei
tPi

t. The ratios Ei
t and Pi

t reflect the relative earning capacities 

and family-group sizes of agents in group 1 relative to i in generation t, and γ<1 is a 

spillover-intensity parameter. This specification is designed to capture a continuous 

social-interaction, or knowledge spillover effect, by which agents with lower earning capacity, or 

effective knowledge (group i), benefit from interactions with leaders in knowledge (group 1) in 

various contexts. 

The relevance of Ei
t is straightforward: the greater the disparity in knowledge, the greater 

the potential learning benefit for a member of i from knowledge possessed by 1. Pi
t is a measure 

of the intensity of social interaction between members of groups 1 and i. The rationale is as 

follows: we assume that the homogeneous members of group 1 are the exclusive source of 

knowledge transfer, and that successful transfer of knowledge from a member of group 1 to a 

member of group i>1 requires pair-wise interactions between the two. The real-world scenarios 

we envisage are the random pairing of agents forming a work team, or sharing a school desk, or a 

two-seat assignment on a commuter plane, which can lead to intensive knowledge transfer.  The 

odds that the pairing includes a member of group i>1 and another group j≠i is (N−Ni)/Ni, where 

N is the total population. However, this pairing can lead to a productive interaction only if the 
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member from group i meets a member of group 1, the conditional probability of which is given by 

N1/(N−Ni). The odds of effective social interaction between members from groups 1 and i is thus 

given by the product of the odds of encounter between an agent from group i and an agent from 

another group, adjusted by the conditional probability that the latter agent is from group 1, or Pi = 

N1/Ni.6  In the two-group case, this measure becomes simply the odds of encounter between agents 

from groups 1 and 2 (or the conventional “teacher-student ratio”).  

Preferences and Motivating Forces:  We take parental altruism to be the major force motivating 

parents’ demand for children. However, we also allow for old-age insurance as a complementary 

motive, as in EL (1991): children are dependent on parents for nurture and educational 

investments, and old parents can benefit from such investments through informal care provided by 

adult children. This is our benchmark case. While some of the model’s basic implications can be 

derived when parents are driven solely by altruism, we base our analysis on this benchmark case, 

since it assures the existence of interior solutions for fertility, human capital investments, and thus 

all inequality measures in all steady states. The pure altruism case is discussed in Appendix B. 

 The utility function of a representative member of family group i at period t is 

(2) U(Ci
1,t, Ci

2,t+1, Ci
3,t+1) =  [1/(1-σ)][Ci

1,t
1-σ −1] + δ[1/(1-σ)]{[Ci

2,t+1
1-σ −1] + [Ci

3,t+1
1-σ −1]}, 

where δ is an intertemporal discount factor, and σ the inverse of the intertemporal elasticity of 

substitution in consumption. In equation (2), Ci
1,t denotes consumption of young adults: 

(3) Ci
1,t = ( H i+Hi

t)[1 − vini
t − θihi

tni
t] − wi

tHi
t. 

The control variable, ni
t represents the number of children per parent, treated as a continuous and 

certain variable. The endogenous size of group i thus evolves over time as Ni
t+1=Ni

tni
t. The 

parameter vi is the fixed cost of quantity of children, and θi is the unit cost of financing educational 

investments per child, which may vary across family types because of capital-market 
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imperfections.  

Old-age consumption per parent in equation (2) is given by 

(4) Ci
2,t+1 = ni

t wi
t+1Hi

t+1, 

Since agents retire at old age, and we initially abstract from savings, old-age consumption depends 

strictly on material transfers from children. We assume that young parents form implicit contracts 

with their children that can be enforceable and time consistent (see EL, 1991).  By this contract, 

each adult child transfers to the old parent an amount of support that is proportional to the stock of 

human capital created by the parent, wi
t+1Hi

t+1. For simplicity, we first treat the compensation rate, 

wi
t+1, or material rate of return per unit of Hi

t+1, as exogenously set by social norms, but we reach 

all our basic propositions by treating wi
t+1 as endogenously determined (see Appendix C)7.  

The last term in equation (2),  

(5) Ci
3,t+1 ≡ Bi(ni

t)β( H i+Hi
t+1)α , with α=1 and β >1, 

defines the conventional parental altruism function in an OLG context, reflecting psychic rewards 

parents obtain vicariously from children’s full income. The restrictions on α and β are necessary to 

assure interior solutions for ni
t and hi

t (note that a growth equilibrium cannot be sustained if α>1). 

To ensure the concavity of equation (2) we must further restrict α(1-σ)<1 (or, σ>0) and β(1-σ)<1.  

B. Basic Solutions 

 The objective function (2) is maximized by choosing the control variables, ni
t, and hi

t, 

subject to (1) and (3)-(5), taking {Hi
t, H1

t, Ni
t, N1

t, wi
t, wi

t+1} as given. By substituting the 

constraints into (2), we derive first-order conditions for ni
t and hi

t as follows:  

(6) [Ci
2,t+1/ Ci

1,t]σ ≥ δRi
n,t ≡ δAi wi

t+1(Si
t)γ(1+βMi

t
*)/[θi +(vi/hi

t)], for ni
t ≥ 0, and 

(7) [Ci
2,t+1/ Ci

1,t]σ ≥ δRi
h,t ≡ δAi

 wi
t+1(Si

t)γ[1+αMi
t
* Hi

t+1/( H i+Hi
t+1)]/θi, for hi

t ≥ 0, 

where Mi
t
* ≡ (Ci

3,t+1/ Ci
2,t+1)1-σ; Ri

n and Ri
h are the rates of return to investments in n and h. 
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 Equations (6) and (7) confirm that in order for interior solutions for ni
t and hi

t to exist, i.e., 

for Ri
n,t and Ri

h,t to equalize over all development phases, we must restrict β>α, and α = 1. This 

restriction and the equality of the rates of return Ri
n,t = Ri

h,t also imply that 

(8) 1 = [Bi(ni
t)β–1/wi

t+1]1–σ [( H i+Hi
t+1)/Hi

t+1]1–σ [β(θihi
t/vi) – (1+θihi

t/vi) Hi
t+1/( H i+Hi

t+1)]. 

 An interesting feature of equations (6)-(8) is that ability, Ai, and the financing cost of 

educational investments, θi, exert opposite effects on nt
i and ht

i, or a “quantity-quality” tradeoff. 

Indeed, if we rewrite equations (6) and (7) as solutions for nt
i and Hi

t+1, rather than ht
i, the solutions 

would depend on the ratio ei ≡ Ai/θi, or families’ relative “investment efficiencies”.  

C. Income Inequality Measures 

 Three income inequality measures become endogenous state variables in our model: 

a. Ei
t ≡ ( H 1+H1

t)/( H i+Hi
t) is a family-income inequality index: the ratio of the (full) income of 

an individual family in family-group 1 to that of a corresponding family in family-group i. An 

inequality measure directly related to Ei
t in our model is inequality in attained human capital 

stocks, H1
t/Hi

t, which may be captured roughly by the standard deviation of schooling attainments. 

b. Si
t ≡ [( H 1+H1

t)/( H i+Hi
t)][N1

t/Ni
t] ≡ Ei

tPi
t is our income-group (or income-bracket) inequality 

index − a product of relative income levels and group sizes of family-group 1 relative to i>1− 

which is also a component of the social interaction term in equation (1). It measures the proportion 

of aggregate income held by members of the top income bracket (above a given dollar value), 

relative to lower brackets. Note that Pi
t≡N1

t /Ni
t is a related endogenous distributional measure – 

a income-group-size inequality index. It measures the proportion of families in the top income 

bracket relative to those in lower brackets, or the relative distribution of families across income 

groups. The latter is not independent of Si
t and Ei

t since, by definition, Pi
t≡Si

t/Ei
t.   

c. The Gini coefficient, Gt ≡ I
jk

I
j 11 +== ∑∑ [(1/Pk

t)(1/Sj
t) − (1/Pj

t)(1/Sk
t)] / [ I

j 1=∑ (1/Pj
t) I

j 1=∑ (1/Sj
t)], 
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turns out to be a non-linear function of Si
t and Pi

t. In the two-family case, the Gini coefficient 

becomes Gt ≡ (Si
t − Pi

t)/[(1+ Si
t)(1+ Pi

t)], which is increasing in Si
t, but decreasing in Pi

t. 

 

III. EQUILIBRIUM REGIMES AND COMPARATIVE DYNAMICS  

 Equations (6) and (7) represent complex second-order simultaneous difference equations, 

and generally no explicit solutions exist for the model’s basic endogenous variables, ni
t, hi

t and Si
t. 

Stable equilibrium solutions can be obtained, however, through simulations satisfying our 

parametric restrictions along with the system’s second-order optimality conditions. The 

simulations indicate that two locally stable steady states exist, corresponding to different 

parameter values: stagnant (s) and perpetual growth (g) equilibrium. 8  The transitional 

development phase connecting the two is supported by the same parameter set that sustains the 

perpetual growth steady state.  

In deriving these alternative development phases, it is necessary to impose some 

restrictions on the distribution of specific parameters across family groups. Given our assumed 

uniformity of preferences and external production parameters, V≡{B, α (=1), β, γ, δ, and σ}, we 

can show that only initial endowments ( H i), abilities (Ai), and unit investment costs (θi) can be 

allowed to vary across families. We shall henceforth refer to this as our heterogeneity restriction. 

In particular, if the vector V is identical in all families, a sufficient condition for stable stagnant 

and growth equilibrium steady states to exist is that the shares of earnings spent on raising 

children, vi, and supporting old parents, wi, must be identical as well.9  

Proposition 1.  Both fertility rates and the marginal rates of change of human capital formation of 

different family groups must converge in any stable equilibrium steady state. Formally, we expect:  

(9) n1
t = ni

t, and a1
t ≡ (dH1

t+1/dH1
t) = A1h1

t
 = ai

t ≡ (dHi
t+1/dHi

t) = Aihi
t(Si

t)γ  for all i>1. 
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Proof: In any stable steady state with heterogeneous families, the distribution of families by 

income class Pi
t ≡ N1

t/Ni
t must be stable over time, which also requires that fertility rates equalize 

across families. Suppose there is an exogenous shock which raises the initial fertility level in 

family 1, n1
t, above that of family i, ni

t. This will increase Pi
t and the social interaction term in 

equation (1), Si
t, which will raise the rates of return to investment in both quantity and quality of 

children. The fertility rate in family-group i will rise relative to that of family 1 (which is 

unaffected by Si
t), subsequently depressing Pi

t and Si
t. The imbalance would continue until fertility 

rates equalize. This result is consistent with optimal behavior by families since in a stable 

equilibrium steady state, the impact of a lower income level is offset by a proportionately lower 

shadow price of fertility.10  

The proof for why the marginal rates of change of human capital formation, ai
t, must 

equalize is similar. Suppose that the families’ equilibrium human capital attainment ratios are 

stable over time, or H1
t+1/H1

t = Hi
t+1/Hi

t. If an exogenous shock raises agent 1’s marginal rate of 

change of human capital above that of i, or a1
t > ai

t, our income inequality measures, both Ei
t and 

Si
t, would rise. A higher social interaction level Si

t raises the rate of return to human capital 

investment for family i, thus ai
t, while a1

t is independent of Si
t. The adjustments would persist until 

the marginal rates of change equalize. In a growth steady state, this condition implies equal growth 

rates of human capital and income across all families. 

A. Stagnant Equilibrium (SE) Steady State.   

 As we document in section C below, if the parameters affecting the rate of return on human 

capital, Ai/θi, vi, wi, are sufficiently low, the only stable steady state is a stagnant equilibrium (SE). 

The conditions under which this equilibrium exists require that in the neighborhood of the SE: a. 

the evolution path of Hi
t+1 as a function of Hi

t intersects the 45% degree line from above, i.e., the 
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slope ai
t(s) ≡ dHi

t+1/dHi
t is less than 1; b. The families’ fertility rates do not increase with 

family-group sizes, or dni
t/dNi

t ≤ 0, so that Pi
t ≡ N1

t/Ni
t converges to a steady state value, Pi(s). Our 

simulations also consistently yield a single stable SE solution under these conditions.11 In this 

steady state, we obtain a strong inference concerning the determinants of family-income 

inequality:   

Proposition 2.  In a stable stagnant-equilibrium steady state, family-income inequality, Ei(s), and 

families’ relative human capital attainments equal their relative inherited income endowments: 

(10) Ei(s) = [H1
t/Hi

t](s)= H 1/ H i, all i. 

Proof: Equation (10) is obtained utilizing equation (1), the stagnancy of human capital attainments 

over time, and proposition 1, requiring that marginal rates of change of human capital equalize 

across families, or a1=ai. The solution is intriguing: status differences are the sole factor 

determining family income inequality in a SE. It is also stable: suppose we start from a stable SE. 

If a parameter shock raises H1
t/Hi

t above H 1/ H i, then Ei
t exceeds H 1/ H i and Si

t rises.  This raises 

ai
t over a1

t, which lowers H1
t/Hi

t until it becomes equal to H 1/ H i. 

 Given our heterogeneity restriction, and assuming that a stagnant-equilibrium steady state 

exists, we can also solve for the equilibrium income-group inequality index, Si(s). By Proposition 

1 and using equations (1), (6), (7), and (10) we obtain:  

(11) R1
h=Ri

h=R1
n=Ri

n and θ1h1 = θihi.  

Combining Proposition 1 and eq. (11), we can derive explicitly the equilibrium Si(s) measure:12  

(12) Si(s) ≡ Ei(s) Pi(s) = [(A1/θ1)/(Ai/θi)](1/γ) ≡ (e1/ei)(1/γ). 

Proposition 3.  Given our heterogeneity restriction, in a SE steady state the shares of full income 

devoted to human capital investments, θihi(s), and the rates of return on quantity and quality of 

children are equalized across all family groups, while income-group inequality, Si(s) ≡ Ei(s)Pi(s) 
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depends strictly on the relative “investment efficiencies” of family 1 relative to i, (e1/ei)(1/γ) . Unlike 

Si(s), however, the size distribution of families across income brackets Pi(s) and the Gini 

coefficient G(s) depend on both relative family endowments and investment efficiencies. 

 Proposition 3 has an intuitive interpretation: By equation (9), the only endogenous 

parameter that can adjust to satisfy proposition 1’s requirement of equal marginal rates of change 

of human capital across family groups, A1h1=Aihi[Si(s)]γ, is the social interaction term. 

Adjustments in investment behavior are strictly a function of relative investment efficiencies 

(equations 6-8). Therefore, adjustments in Si(s) must be a function of relative investment 

efficiencies as well.    

Propositions 2 and 3 offer a set of comparative dynamic implications in the stagnant steady 

state. By Proposition 2, family income inequality, Ei(s), is strictly a function of families’ relative 

endowments. Any changes in relative inequality across income brackets, Si(s)≡Ei
t(s)Pi

t(s), are 

therefore made via adjustments in relative family group sizes, Pi(s)=[N1/Ni](s). For example, an 

increase in the intensity of knowledge spillover, γ, leaves family choices intact, but lowers 

income-group inequality, Si(s), thus Pi(s). Changes in the common values of other parameters can 

affect fertility, ni(s), and human capital investment, hi(s), but not any of our income inequality 

measures. Higher fixed cost of fertility (v1=vi) raises hi and lowers ni in all families. Stronger 

altruistic preferences (B1=Bi), in contrast, yield just the opposite effects. (See Table 1 part 1.)  

 Is income inequality related systematically to income levels in a stagnant equilibrium? 

Note that although income levels are stagnant over time, they can vary with parameter changes. 

For example, a skill-biased technological improvement raising family 1’s relative investment 

efficiency, e1, initially raises the rate of return to hi over ni, thus ultimately Hi(s) and income levels 

in all families. By proposition 2, however, family-income inequality, Ei(s), remains unchanged, 
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while by proposition 3, income-group inequality, Si(s) rises because the wealth effect generated by 

a higher e1 initially increases group 1’s relative fertility, thus ultimately its population share Pi(s) 

≡ [N1/Ni](s). The impact on Gini is generally ambiguous, since G(s) rises with Si(s), but falls with 

Pi(s).13 In our simulations, however, the latter effect dominates (see Table 1 part 1). In the SE, a 

specific parameter change may thus change different inequality measures in different directions.14  

B. Growth Equilibrium (GE) Steady State.   

 Here the state variable Hi
t grows without bound with constant, long-run values of ni(g), 

hi(g), and all inequality measures. Since the role of the income-producing endowments vanishes, 

proposition 1 implies that the long-run growth rate of human capital in all groups converges on its 

marginal value in family group 1, limt→∞ (Hi
t+1/Hi

t) ≡ a1(g)=A1h1(g) = ai(g) =Aihi(g)Si(g)γ. Local 

stability is assured if the slope of the evolution path of Hi
t+1 as a function of Hi

t, ai(g) ≡ dHi
t+1/dHi

t, 

exceeds 1 and the fertility rates cannot be increasing with group sizes, or dni
t/dNi

t ≤ 0.15 

Proposition 4.  Proposition 3 remains valid at the growth equilibrium steady state as well. 

Moreover, if the distribution of the heterogeneous parameters Ai and θi remains the same in the SE 

and GE, income-group inequality Si would converge on the same level in both steady states: 

(13) Si(g) = [(A1/θ1)/(Ai/θi)](1/γ) ≡ (e1/ei)(1/γ) = Si(s),  all i. 

 The proof is the same as for Proposition 3 (fn. 12). The comparative-dynamic implications 

of equation (13) are also similar to those of equation (12): Si(g) rises with the relative investment 

efficiency (e1/ei) and falls with the spillover coefficient γ, as is the case for the SE steady state.  

Unlike the stagnant steady-state case, however, where family-income inequality Ei(s) was 

determined strictly by the relative income producing endowments across families (see eq. 10), the 

relative influence of endowments vanishes under persistent growth. The comparative values of Ei 

in the GE vs. SE steady states thus depend on inter-family differences in investment efficiencies, 
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as well as on the factors determining the evolution of Ei
t along the development phase linking the 

two steady states. The same holds for the income-group-size inequality index, Pi
t.  

 Comparative-dynamics effects of parameter shocks on the family-income (Ei(g)) and 

income-group-size inequality index (Pi(g)) inequality indices are thus ambiguous. A skill-biased 

technological advance favoring the leading family (a rise in e1/ei), which by proposition 4 

unambiguously raises Si(g)≡Ei(g)Pi(g), must raise either Ei(g), or Pi(g), or both. Ei(g) necessarily 

rises if the upward shift in A1 raises the growth rate of human capital in family 1, A1h1
t, above that 

in family i all along the transitional dynamics path. This is the case if the utility function is 

logarithmic (σ=1), since in this case, changes in A1 or γ have no effect on hi or ni, and hence on 

Pi(g) (see footnote 15). If σ≠1, fertility may rise while h falls with a rise in A1, essentially because 

such a shock does not alter the relative rate of return on n and h (unlike the stagnant equilibrium 

case), while the pure wealth effect generated by a higher e1 favors fertility. The effect on the Gini 

coefficient is ambiguous if both Si(g) and Pi(g) increase as a result, since G(g) rises with the former 

and falls with the latter. However, in all our simulations in Table 1 part 2, G(g) moves in tandem 

with all other income inequality measures.  

These results appear to be consistent with the US experience following the “Information 

Technology revolution”: empirical studies have shown that income inequality rose in the 1980s 

(see e.g., Katz and Murphy, 1992). Moreover, as Census data indicate, fertility levels have actually 

reversed a historic downward trend since the baby boom and started growing from 1.74 in 1977 to 

a peak of 2.08 in 1990, remaining steady at about 2.02 thereafter, and the coefficient of variation 

of fertility rose from 0.619 in 1983 to 0.710 in 1994 and has remained stable since then. 

 Table 1, part 2 also indicates that common parameters such as v and B, which do not 

affect any income inequality measure, affect the growth rate in opposite directions: a rise in v 
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lowers ni(g) and raises hi(g), thus the growth rate, while a rise in B lowers both. A skill-biased 

technical change, in contrast, raises all income inequality measures and the growth rate as well. 

The association between income growth rate and income inequality thus depends largely on the 

parameter changes responsible for their co-movements.  

C. Takeoff Triggers.  

 Whether the economy is in a stagnant or growth equilibrium depends on the magnitude of 

the model’s basic parameters. An upward shock in Ai/θi, v, or w (treated as exogenous) raises the 

rates of return to both quantity and quality of children, but also the latter over the former, Ri
h,t/Ri

n,t 

(see equations 6 and 7). Indeed, a sufficient shock, even one affecting just group 1, can generate 

a takeoff for all groups. Our simulations produce another key feature of economic development – 

the “demographic transition”– whereby fertility generally declines while investment in human 

capital increases as a result of a sufficient upward shift in any of our takeoff triggers (see Table 1 

part 3). In the logarithmic utility case, this can be shown analytically as well (see fns 11 and 15).  

IV. INEQUALITY PATHS OVER THE TRANSITIONAL DEVELOPMENT PHASE 

A. Paths of Income Inequality Measures 

 The preceding analysis indicates that the behavior of inequalities over the development 

phase partly depends on the type of shock that produces a takeoff. An equally important issue is 

how fast any given shock reaches different family groups: a skill-biased technological advance, 

e.g., is likely to first reach the group with the highest investment efficiency, or affect it 

proportionally more than other groups. While this group need not necessarily be the one with the 

highest income − this depends on the correlation between ability and initial endowments across 

family groups − a positive correlation is likely, as conjectured by Becker (1967). To contain the 

possible scenarios we focus on three that are neither exhaustive nor necessarily of equal empirical 
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plausibility:  

a. Synchronous and uniform shocks: These shocks affect all takeoff-triggering parameters (A/θ, 

v, w) simultaneously and by the same proportion. This case can be dubbed as “the separating 

equilibrium path”; we can show that over the transitional phase: 

(14) Si
t = Si(s) = Si(g) = [(A1/θ1)/(Ai/θi)](1/γ), and Ei

t = Ei(s) = Ei(g) = H 1/ H i. 

Put differently, our basic earnings inequality measures chart a horizontal path all along the 

development process. This is because a uniform proportional increase in a takeoff-triggering 

parameter affects all optimality conditions symmetrically, leaving constant the spillover effect. 

Since the Gini coefficient is a function of Si and Pi, it also exhibits a flat transition path. 

b. Shocks favorable to family 1: Such a shock affects family 1 either proportionally more than 

other families, or ahead of other families. An example would be a takeoff-triggering technical 

advance that enhances more the skill of family 1(A1), or complements all families proportionally, 

but is first integrated by family 1. We implicitly assume a positive correlation between 

income-generating endowments and efficiency at human capital investments, or COV( H i, Ai/θi) 

> 0, so the higher-income family 1 is a leading group at both the stagnant and growth steady states. 

 If family 1 is affected ahead of other families, the transitional development phase would be 

characterized by the co-existence of family groups in different stages of transition: Family 1 would 

initially become a “growth family” while other families remain “stagnant families”. But the 

persistent growth in family 1’s income ultimately produces a takeoff for all, and by proposition 1, 

all will ultimately grow at an equal rate. The time paths of all income inequality measures (Si, Ei, 

and G) will exhibit an inverted-U shape, consistent with the “Kuznets hypothesis”.  

Whether the income inequality level at the growth equilibrium is higher or lower than at 

the stagnant equilibrium depends on whether the shock ultimately affects all families uniformly, 
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i.e., equi-proportionally. An ultimate uniform shock does not affect the GE income-group 

inequality level Si≡EiPi by equation (13), but it raises the GE family-income inequality level, Ei(g), 

because of the demographic transition triggered by the jump in A, which lowers the fertility level 

in group 1 ahead of group i and thus the relative size of group 1, Pi(g) (see Figure 1). If the shock 

raises Ai proportionally more for family 1, income inequality would then be monotonically 

increasing over the development phase for all our three income inequality measures.  

c. Shocks favorable to family i: A family-i friendly shock could occur, e.g., when a less 

segmented capital market lowers the education financing cost to all families, but especially to 

family i, thus lowering (e1/ei), or when the shock first benefits family i members, who could not 

initially finance private schooling. In this case, the takeoff-triggering shocks will produce 

transition paths just opposite to those in case b. The time paths of all inequality measures will 

assume a U shape if family i experiences a takeoff shock ahead of family 1 (see Figure 2). 

Whether the inequality level rises or falls at the GE, relative to the SE steady state depends on 

whether the non-synchronized shock ultimately becomes equi-proportional, in which case the 

income-group inequality, Si, is constant and Pi(g) rises, so family-income inequality, Ei(g), falls, 

or if investment efficiency rises proportionally more for family i, in which case the income 

inequality level is monotonously decreasing.16   

 Our simulations of cases b and c also reveal opposite associations between income growth 

rate and income inequality over the transitional development phase. In case b, income inequality 

and per-capita income growth rate are positively associated, as Forbes (2000) finds, while in case 

c they are negatively associated at an early stage of the transition, but become positively associated 

at a more advanced stage, which is what Barro (2000) finds. Our analysis thus shows that the 

dynamic association between income growth and income inequality can vary by the specific 
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takeoff triggers, or at different stages of the transitional development phase. 

 Regardless of the way a takeoff-generating shock affects different families, a general 

implication of our model is that the shape of the family-income inequality path over the transition 

Ei
t ≡ ( H 1+H1

t)/( H i+Hi
t), would always be consistent with that of human capital attainments, 

H1
t/Hi

t, regardless of the shape of the paths. Our simulations indicate that this applies to our other 

measures of income inequality as well.  

B. Paths of inequality in fertility and human capital investment. 

Since by propositions 1, 3, and 4 optimal fertility and the shares of income spent on 

educating each child are equal for all families at both the SE and the GE steady states, while they 

generally deviate across families during the transitional phase connecting the two, we have: 

Proposition 5.  Except in the “separating equilibrium” case, the transitional development path of 

inequality in completed fertility n will exhibit an inverted-U shape, but tend toward equality in 

the two steady states framing the transitional phase. The same applies to the transitional 

development path of the educational investment cost shares, θh. (See Figures 1d and 2c.) In the 

separating equilibrium case, the inequalities in n and h assume a flat time path.  

 If income inequality measures assume an inverted-U shape, as in case b of the preceding 

section, family 1’s fertility level is lower than that in family i over the transitional development 

phase (see Figure 1a). This association between fertility rankings and income inequality is 

consistent with the findings in Kremer and Chen (2002) and De la Croix and Doepke (2003). In 

contrast, when income inequality assumes a U shape, as in case c, family 1’s fertility exceeds that 

of family i during the transitional phase. In our GE framework, however, such associations do not 

indicate causality, nor can they be persistent, since fertility differences vanish in any stable steady 

state. 
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V. EMPIRICAL ANALYSIS 

A. Basic tests 

We test empirically two basic implications of the model: a. By Proposition 5, we expect fertility 

inequality to display an inverted-U shape with flat tails over the development phase (except in 

the “separating equilibrium” case); b. We similarly expect inequality in human capital 

investments to exhibit an inverted-U-shaped path over the transitional development phase. No 

reliable data on investment flows are available internationally. However, using schooling levels to 

approximate human capital attainments, we predict the shapes of schooling and family-income 

inequality paths to be similar over the transition phase.17  By our simulation analysis, this 

expectation applies to all our income-inequality measures as well. 

B. Data and Variables Used 

a. Completed fertility. Distributional data on the number of surviving children per woman are 

available from the World Fertility Surveys (WFS) and their successor ⎯ the Demographic and 

Health Surveys (DHS). The sample we construct is based on 72 surveys of 29 developing countries 

in various years between 1974 and 2000.  From the individual-level micro data in each survey, we 

derive the distribution of surviving children of women age 40 an over. We make this restriction to 

insure that our measures relate to women who completed childbearing. We then use the standard 

deviation of the distribution of surviving children per woman age 40 and over [SD-FERT] as our 

fertility inequality measure. But since the standard deviation is subject to a secular drift, we also 

enter the average level of completed fertility as a control variable, [AV-FERT].  

b. Human capital. The source of educational attainments data (schooling years in the population 

age 15 and over) is Barro and Lee (2000).18 We use the average number of years of schooling in 

the population age 15 and over as a proxy for human capital stock. As a measure of inequality in 
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educational attainments we use the standard deviation of the distribution of schooling years 

[SD-SCHYR] in the population age 15 and over. As in the fertility inequality regressions, we also 

add the mean schooling years as a control variable [AV-SCHYR].  

c. Income inequality. The data are taken from Dollar and Kraay (2001). These data cover 86 

countries over the period 1950-1998. No data are available to compute our income-group 

inequality measure, Si. We proxy our family-income inequality measure, Ei, however, by an 

inter-quintile income inequality ratio [QUINT] (each ‘quintile’ representing, by definition, an 

equal number of households), and we measure G by the actually measured Gini coefficient [GINI]. 

To be consistent with our model, we use only observations that are calculated from household 

income data, excluding observations based on personal income and expenditure data.  

d. Regressors. We use real GDP level [RGDP], as reported in Heston, Summers, and Aten [HSA] 

(2001) to account for the economy’s level of development. As a robustness check, we also enter 

the time trend itself as a control variable. We use the government share of GDP [GOV] and the 

share of government educational expenses in GDP [GED] to account for the role of government 

spending in affecting our distributional variables. These variables are taken from HSA and 

UNESCO, respectively. Summary statistics for all variables are reported in Appendix D.  

C. Regression models 

 Our basic specification is an OLS regression in which our inequality measures and the 

regressors are entered in natural form, but RGDP is entered in cubic or higher-order polynomial 

form. This is because we predict the flattening of the income inequality path as the economy 

converges on a growth steady state. Using OLS is consistent with our model, since we expect the 

relation between our inequality variables and the development level to be associative, not causal.  

 To examine the robustness of our results, we also test several modifications. The first uses 
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OLS with fixed country (models 2-4), and year (model 5) effects. Models 2-4 thus capture 

“within-countries” variability in the regressors, whereas model 5 captures “within-calendar-year” 

variability. In models 3-5, we also test the effect of the government’s share of GDP, GOV. In 

model 4, we include a time trend variable T to account for missing trended controls.  

 In the fertility regressions of Table 2, we employ country-specific random-effects, instead 

of fixed-effects, models to increase the regressions’ degrees of freedom, because the number of 

observations per country is small (2.6 per country). The results from the fixed-effects specification 

are similar qualitatively, but the regression coefficients have larger standard errors. 

 To test for serially correlated errors, we have applied an AR(1) serial correlation test to 

model 3 of each table. The Cochran-Orcutt test rejects the null hypothesis in all cases.  

D. Results 

 The fertility results are reported in Table 2. Regression model 1 estimates an 

inverted-U-shaped association between fertility inequality and real income, with inequality 

peaking at an RGDP level of $3,538 (note that our sample is dominated by developing countries, 

so 67% of the observations lie below this real GDP level and 33% above it). The estimated 

association is depicted in Figure 3a. The shape remains virtually the same when we apply 

random-effects regressions – with or without calendar-year dummy variables. As for other 

regressors, the standard deviation of the fertility distribution is monotonically related to the 

distribution’s mean, as one would expect for any distribution. GOV - a proxy for the average 

income tax - has a negative and significant effect only in the Gini regressions. Public education 

expenditures [GED] generally have the same effect as GOV, but because it entails a very large 

reduction in sample size, we do not report these regressions. The time-trend regressor, introduced 

to account for missing trended factors, is inversely related to fertility inequality, but is directly 
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related to educational attainments inequality. 

 Table 3 reports the results concerning inequality in educational attainments. Regression 

results indicate an inverted-U-shaped association between income and educational-attainment 

inequality, as depicted in Figure 3b. Mean schooling expectedly raises the SD of schooling.  

 Tables 4 and 5 estimate the shape of the income inequality path for the Gini coefficient and 

QUINT (as a proxy for Ei
t), respectively.  All model specifications indicate an inverted-U-shaped 

association between income inequality and income level. In model 6 of both tables we derive this 

association based on the subset of countries for which both income and educational attainments 

data are available. We do so because our model and simulation results imply that family-income 

inequality (Ei
t) and human capital distribution paths would exhibit an increasingly similar shape as 

the economy converges on a GE steady state. The results of model 6 are depicted in Figures 3c and 

3d, which are found to be surprisingly similar to Figure 3b depicting the educational attainments 

inequality path.19 This lends support to our human capital approach to income distribution. While 

income inequality at the higher-income range is falling, we cannot determine from this evidence if 

income inequality is higher or lower at the growth vs. stagnant steady states, since all countries in 

our sample may have already reached an advanced transition stage toward a GE steady state.  

 Tables 3-5 have special significance from our model’s perspective: since the estimated 

associations between educational attainments and income level, and between our income 

inequality measures and income level take on an inverted-U shape, the results militate in favor of 

the Kuznets hypothesis. Note, however, that these results cannot be taken to support the Kuznets 

hypothesis as a general “law”: our analysis indicates that the observed association can be affected 

by the specific composition of countries in our sample, in terms of the development stage they 

have achieved, as well as by the specific takeoff triggers operating in different countries.   
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 Our results concerning the dynamic behavior of income inequality can be compared to 

those of Deininger and Squire [DS] (1998). Although DS employ the same data, they use a 

different fixed-effects regression format where RGDP is entered via two variables, RGDP and 

1/RGDP. When we add a cubic or higher-order form of RGDP to the DS specification, however, 

the plotted relationships between GINI or QUINT and RGDP exhibit inverted-U shapes in this 

specification as well, similar to those in Figures 3c and 3d.  

VI. CONCLUDING REMARKS 

The main message of this paper is that income distribution in the population is determined 

fundamentally by the corresponding distribution of human capital attainments, not just under static 

conditions, as in Becker’s seminal 1967 paper, but under dynamic conditions as well. In this 

context, propositions concerning the behavior of income inequality over a transitional 

development period – what Kuznetz had focused on – should be explained by the dynamic 

behavior of inequality in educational attainments. Our paper’s main insight is that the behavior of 

the educational inequality path, in turn, is linked to that of its two main determinants: investments 

by the parents’ generation in the quantity (ni) and quality (hi) of their offspring. This linkage 

enables us to derive theoretical income inequality paths over the transitional development period, 

as well as inferences about the income inequality levels in the two steady states which frame it. 

Although our analysis is based on a deterministic model of heterogeneous families 

differing in abilities, investment efficiencies, and inherited endowments, it allows for social 

mobility as well, as would be the case if leadership in human capital formation switches over the 

development phase from the group with initially highest human capital attainments to a group with 

an initially lower one. We can also extend our model to allow for stochastic variations in ability 

within groups as a major source of intra-group heterogeneities. This extension provides additional 
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dynamic implications about social mobility, but does not alter the main propositions of our paper 

(see footnote 4). Furthermore, although our benchmark model relates to inequality in earning 

capacity, the propositions we derive can be shown to apply to total family income as well (see 

Appendix A). 

A central implication of our analysis is that regardless of the dynamic pattern of any of our 

income inequality measures, which remain positive over time, the inequalities in both fertility and 

educational investments are expected to have an inverted-U shape over the transitional 

development phase with attenuated tails. This prediction is borne out by our empirical analysis in 

section V, based on data from developing and developed countries. It is also consistent with 

historical evidence indicating that relative variances of fertility in most Western European 

countries exhibit an inverted U-shaped path between the mid-19th century and 1970, and were 

quite small in the pre-demographic transition phase, although this evidence relates to variations in 

fertility levels across provinces, rather than families (see Coale and Treadway, 1986).  

Concerning the dynamic association between income growth and income inequality, our 

model offers several insights. First, no general “law” can be derived, since the association reflects 

the impact of underlying parameter changes that trigger co-movements in both income level and 

income inequality. We can thus account, in principle, for empirical studies producing conflicting 

shapes of income inequality paths over a transitional development period. We show, first, that the 

observed association can go in similar or opposite directions depending on the way specific 

parameter changes affect different family groups. Second, the association depends on whether the 

economy is in a stagnant- or growth-equilibrium steady state, or in a transitional development 

phase, which makes the results vulnerable to the specific mix of countries in the sample. Third, the 

association partly depends on the inequality measure used. We derive three such measures as 
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endogenous variables: family-income inequality (Ei
t), income-group inequality (Si

t=Ei
t Pi

t), which 

also depends on an income-group-size inequality measure (Pi
t), and the Gini coefficient (Gt). We 

show that Gt is a non-linear function of the latter two: it is increasing in Si
t but decreasing in Pi

t. 

Our model offers some strong predictions concerning the dynamic behavior of these measures. 

For example, under an assumed homogeneity of preferences and a stable distribution of 

abilities, or investment efficiencies, we expect the relative distribution of income across income 

groups, or brackets, to converge on the same level in stagnant and growth steady states, Si(s)= 

Si(g). This specific measure of relative income inequality, which may be approximated empirically 

by the relative shares of aggregate income going to different income brackets, may thus exhibit a 

high degree of stability over the long haul. We expect family-income inequality in a stagnant 

steady state, Ei(s), to be strictly a function of inequality in family-specific endowments such as 

political or legal status, but show that the role of these inherited endowments gradually vanishes 

as the economy converges on a growth-equilibrium steady state. No clear-cut predictions can be 

made, however, about the shape of the family-income inequality path over the transition phase: 

this measure is affected by the specific takeoff-triggering parameter and the way it impacts 

different family groups. An inverted-U-shaped family inequality path is likely to emerge as a 

result of a uniform skill-biased technological advance that first reaches the top (highest skilled) 

family group, in which case the family-income inequality level would be higher at the growth 

steady state relative to the stagnant equilibrium steady state, which is the approximate shape 

produced by our empirical investigation in section V. An inverted-U-shaped family-income 

inequality with inequality turning lower at advanced vs. initial development phases, in contrast, 

can emerge as a result of reduced capital market segmentation, first taken advantage of by more 

knowledgeable, higher-income families, but which lowers especially the financing-cost 
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disadvantage of lower-income families. 

Our analysis can rationalize dynamic changes in income inequality not just over the 

transitional development period, but within equilibrium growth regimes as well. For example, the 

information technology revolution experienced largely during the 1980s is predicted by our 

comparative dynamic analysis to raise the steady-state level of family income inequality, but also 

the steady state level of fertility. This, indeed, is what the US data show in the 1980s.  

A central implication of our model is that the dynamic path of family-income inequality, 

regardless of its shape, should mirror that of educational attainments, all having flat tails. This is 

what we find empirically. Our empirically estimated Kuznets-like paths of inequalities in income 

and schooling attainments may not be general, as we argue theoretically, but the patterns are 

consistent with each other. This lends support to our thesis that human capital is both the engine 

of income growth and the main determinant of income distribution paths over the development 

process. 
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Appendix 
 

A.  Although our benchmark model abstracts from capital markets, we can incorporate returns on 
savings as an outcome of “home production”, whereby the old parents’ human capital attainments 
is an input, and the yield is subject to diminishing returns. This is a natural assumption in the 
context of our closed-economy framework. The extension allows us to recognize inequalities in 
labor earnings as well as in total income, incorporating both earnings and property income. 
 
 Formally, total savings is defined by Kt≡( H i+Hi

t)si
t, where si

t is the fraction of productive 
capacity saved at adulthood, and Kt is assumed to fully depreciate within one generation. Income 
from savings is generated when old parents combine their accumulated assets, Kt, with their 
human capital inputs via the production function, F= D( H i+Hi

t)1−κ[( H i+Hi
t)si

t]κ, 0<κ<1. The 
consumption flows at adulthood and old age are thus given by 
(3′) Ci

1,t = ( H i+Hi
t)[1 − vini

t − θihi
tni

t − si
t] − wi

tHi
t,  

(4′) Ci
2,t+1 = ni

t wi
t+1Hi

t+1 + D( H i+Hi
t)1−κ[( H i+Hi

t)si
t]κ. 

 
 We can now distinguish income inequality from earnings inequality. The measures of the 
pooled income of a family head – earnings as well as property income from savings – can be 
defined parallel to our earnings-inequality measures in section II.C. For example, TSi

t below 
corresponds to the ratio of total income-group inequality (wage earnings of adult parents plus 
non-wage income of old parents) of group 1 relative to group i, and the same holds for family 
income inequality, TEi

t, and the Gini coefficient, TGi
t (in the 2-family case): 

TSi
t ≡ [N1

t ( H 1+H1
t) + N1

t-1 D( H 1+H1
t-1)(s1

t-1)κ]/ [Ni
t ( H i+Hi

t) + Ni
t-1 D( H i+Hi

t-1)(si
t-1)κ], 

TEi
t ≡ TSi

t / TPi
t;  TPi

t ≡ [(N1
t + N1

t-1)/ (Ni
t + Ni

t-1)], and 
TGi

t ≡ [TSi
t − (N1

t + N1
t-1)/(Ni

t + Ni
t-1)] /(1+ TSi

t)/[1+(N1
t + N1

t-1)/(Ni
t + Ni

t-1)]. 
 

Under our heterogeneity restriction, we can show that optimal savings (si), fertility (ni), 
human capital investment costs per child (θihi), and the rates of returns to these control variables 
are identical for all family groups in any steady state, since the first-order optimality conditions 
governing these control variables become identical for all family groups in all stable steady states. 
Our total income inequality measures are therefore identical to the corresponding 
earnings-inequality measure at both the stagnant- and growth-equilibrium steady states. Moreover, 
we can show that the relative inequality in earnings, and hence in total income in this extended 
model is the same as that derived in our benchmark model sans savings, as given by equations 
(10), (12) and (13). All of the propositions in sections III and IV are also maintained in this 
extended model, as are the qualitative results of the comparative dynamics reported in Table 1 for 
both the SE and GE steady states. The time paths of the inequality measures considered in section 
IV are also shown to take the same pattern as in the model without savings.  
 

Over the transitional development phase, however, the savings rate may differ across 
families. For example, when a takeoff occurs as a result of a skilled-bias technological advance 
reaching initially the higher-income family group 1, our income inequality measures assume an 
inverted-U shape, and the savings rate of the higher-income family 1 initially falls below that of 
the other (stagnant) families. In the following stage, however, as family groups i>1 experience a 
takeoff because of the social-interaction effects coming from family-group 1, their savings rates 
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fall below that of family 1. The aggregate savings rate then starts rising while income inequality is 
increasing. The resulting positive association between income inequality and the aggregate 
savings rate does not indicate causality, however (as in Keynes, 1920, or Kaldor, 1957). It 
eventually reverses in this example, as income inequality starts falling, and it vanishes as all 
savings rates converge on equality in the GE steady state.  
 
 What would be the effect of changes in D or κ on our income inequality measures? As long 
as these changes are common to all families, they will affect only the composition of family 
income, but not the relative, total income inequality measures, as our simulations confirm.  
 
B.  Given that parents’ demand for children is motivated strictly by altruism, as specified in 
equation (5), with no material incentive (i.e., w=0), we can show that under a stable stagnant 
equilibrium steady state, the first order optimality conditions for fertility hold across all family 
groups only when none invests in human capital formation, i.e., if h1(s)=hi(s)=0. This condition 
can be shown to guarantee that both the rates of return on fertility, and the equilibrium fertility 
rates would be equalized across all family groups, i.e., n1(s)=ni(s). Equality of fertility rates is 
necessary to assure the existence of any steady state equilibrium by proposition 1, since otherwise 
one family group becomes dominant in the population, and all inequalities vanish. Note that if we 
adopt the altruism functions in EL (1991) instead of the one used in this paper, this could lead to 
interior solutions in both ni(s) and hi(s) in the stagnant steady state, but in this case, increases in 
investment efficiencies cannot produce a demographic transition in fertility. 
 
 Since there is no human capital accumulation in this stagnant equilibrium, or Hi(s)=0, the 
family-income inequality ratio is automatically set by the income-generating endowment ratio, 
Ei(s)= H 1/ H i, as is the case in our benchmark model. But since there is no interior solution for 
hi(s), the equilibrium value of the social interaction term, Si(s)≡Ei(s)Pi(s), cannot be pinned down, 
as is the case under our benchmark model: although the rates of growth of the various population 
groups are equalized, the population ratio Pi(s)=N1(s)/Ni(s) depends entirely on the arbitrary 
values one would assign to the initial values of the population groups. Our income-group 
inequality measure and the Gini coefficient, Si(s) and G(s), are thus indeterminate in the stagnant 
equilibrium steady state. As a result, we also cannot pin down the time paths of Si

t, Pi
t and Gt 

during the transitional development phase, and their comparison with their counterparts under a 
growth equilibrium steady state. 
 
 This corner solution in hi=0 at the stagnant state can always be avoided, if we allow for any 
positive old-age support rate w>0. This is because the marginal return to human capital investment 
becomes infinite as hi approaches zero. The pure altruism case can be applied, however, at the 
growth steady state, and its behavioral implications are qualitatively the same as those we derive 
for our benchmark case. 
 
C.  In this appendix, we treat the old-age support rate, as an endogenous variable, rather than an 
exogenous constant. We follow EL (1991) in analyzing parents’ choice of wi

t+1 as a time 
consistent, principal-agent decision. Parents select values of wi

t+1 that maximize equation (2) for 
children, taking as given the children’s optimal choice of human capital investment and fertility. 
The resulting Stackelberg-equilibrium solution is thus inferred from: 
dWi(t+1)/dwi

t+1 = [∂Wi(t+1)/∂Hi
t+1] [∂Hi

t+1/∂wi
t+1] + ∂Wi(t+1)/∂wi

t+1  
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  = di
1(t+1)−σ ci

1(t+1) Ai (Si
t)γ (∂hi

t/∂wi
t+1) − di

1(t+1)−σ Ai hi
t (Si

t)γ = 0, where 
di

1(t+1) ≡ (1 − vini
t − θihi

tni
t − wi

t+1λi
t+1), λi

t+1≡[Hi
t+1 /( H i + Hi

t+1)], and 
ci

1(t+1) ≡ (1 − vini
t − θihi

tni
t − wi

t+1). In a growth equilibrium steady state, di
1(t+1) = ci

1(t+1).  
The optimal support rate, wi*, equates the marginal cost and benefit to grown-up children from 
rewarding their parents for the earning capacity they helped create, subject to the “reaction 
function” {hi

t, wi
t+1} governing the parents’ investment decision (∂hi

t/∂wi
t+1). 

 
Under our heterogeneity restriction, the optimal support rates wi* become identical across 

family groups at both the stagnant and growth equilibrium. Consequently, the comparative 
dynamics simulations of a model with endogenous w become qualitatively identical to those 
reported in Table 1, where w is treated as a fixed, but identical across family groups.  
 

Our simulations also show that the optimal value of w* falls following any parametric 
shocks that produce takeoffs from stagnant- to growth-equilibrium steady states, essentially 
because the continuous growth in the level of offspring’s human capital assets lowers the rate of 
return per unit of asset demanded in compensation by altruistic parents. The simulations also 
indicate that w* falls with A1, 1/v, and B in the growth steady state. Similar results are obtained in 
the stagnant steady state, except that a higher A1 raises w* in that state. Shifts in γ and H i have no 
effect on w*.  
 
D. Variables used and summary statistics  
 
Variable Description Mean [Std. Dev.]
   

SD-FERT Standard deviation of the distribution of surviving children 
per female ≥ 40 

2.520 
[0.306] 

AV-FERT Average of the distribution of surviving children per female 
≥ 40 

4.179 
[1.161] 

SD-SCHYR Standard deviation of the distribution of schooling years in 
the population ≥ 15  

3.684 
[0.806] 

AV-SCHYR Average of the distribution of schooling years in the 
population ≥ 15   

4.888 
[2.755] 

GINI* Gini coefficient  37.76 
[7.948] 

QUINT* Share of total income received by the top relative to the 
bottom quintile of families in the population  

8.826 
[5.259] 

RGDP Real per-capita income 6340 
[5960] 

GOV GDP shares of government spending  19.53 
[8.821] 

GED Share of government educational expenses in GDP 5.346 
[1.550] 

* We calculate GINI and QUINT exclusively based on household income data reported in Dollar 
and Kraay (2001), excluding observations based on personal income, personal expenditures, or 
household expenditure data. 
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ENDNOTES 
  
1 Some studies favor the Kuznets hypothesis: e.g., Lindert and Williamson (1985) and Barro (2000). 
Others reject it, or find no systematic relation, e.g., Anand and Kanbur (1993), Fields (1990), Fields 
and Jakubson (1994), and Deininger and Squire (1998). Studies of the relation between the rate of 
income growth and income inequality also report mixed results:  Persson and Tabellini (1994), 
Alesina and Rodrik (1994), and Deininger and Squire (1998) find a negative relation; Forbes (2000) 
finds a positive one; Barro (2000) finds that higher inequality lowers the growth rate in poor countries 
while raising it in rich countries, while Banerjee and Duflo (2000) find an inverted-U relation 
between the two. 
 
2 Models supporting Kuznets’ causality direction rely on, e.g., structural shifts in a two-sector 
model (Kuznets 1955, 1963, Anand and Kanbur 1993); skill-biased technical progress (Eicher 
1996, Aghion et al. 1999); and organizational changes (Kremer and Maskin 1996, Lindbeck and 
Snower 1997, Acemoglu 1999). Models favoring causality going from inequality to growth rely 
on, e.g., credit market imperfections (Loury 1981, Galor and Zeira 1993, Banerjee and Newman 
1993, Benabou 1996, Durlauf 1996, and Galor and Moav 2004); political economy changes 
(Venieris and Gupta 1986, Alesina and Perotti 1996, Benhabib and Rustichini 1996); and fertility 
changes by income (Kremer and Chen 2002, and De la Croix and Doepke 2003). 
 
3 Lucas (1988) also considers spillover effects in goods production, stemming from the average 
human capital level in a representative-agent model. Tamura (1991) applies a similar spillover effect 
in human capital production, which results, however, in full income-convergence. Zhong (1998), and 
Ehrlich and Yuen (2000) develop a framework similar to ours, but abstract from the dynamic 
ramifications of the joint fertility and investment in human capital choices. 

4 Becker (1973) and Burdett & Coles (1997) offer evidence supporting positive assortative mating 
by intelligence, education, and related characteristics. Note that our assumed fixed distribution of 
family types still allows for family-group mobility over time, since groups with initially low 
earning capacity may move closer to, or even overtake, group 1 in the course of development (see 
fn 16). We can also allow for individual mobility as well by introducing stochastic deviations in, 
say, inherited ability (A) within subgroups (k) of family type (i), using a stochastic specification 
similar to that of Becker and Tomes (1979): Ak,i

t+1 = φAk,i
t + (1-φ)Ai + εk,i

t+1, where Ak,i
t+1 is the 

ability level of generation (t+1) in subgroup k, Ai is the mean ability level of group i, φ (<1) is a 
positive weight, and εk,i

t+1 is a stochastic variable, iid, with zero mean and constant variance. 
Assuming positive assortative mating within subgroups, we obtain regression towards the mean 
ability level Ai within subgroups. Our model’s basic implications hold under this extension as 
well. 
 
5 We also abstract from strategic group behavior designed to benefit from spillover effects. 
 
6 While there are other ways to model social interaction in the multiple-family-groups case, we can 
show that the “odds-ratio” (N1/Ni) by which Ei is weighted, or any linear transformation thereof, is 
necessary to achieve a steady-state equilibrium solution in this deterministic setting. Alternative 
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“weights”, such as N1

t/(N1
t+Ni

t), N1/ I
j 1=Σ Nj, or N1/ I

j 2=Σ Nj, would fail to produce steady state 
solutions for our endogenous population shares, even in the two-family-group case. Chiu (1998) 
uses a similar weight in his social interaction function.  
 
7 Reliance on such inter-generational transfers going from children to parents plays an important 
role in our analysis because it guarantees the existence of interior solutions for both fertility (ni) 
and investment in education (hi) in the stagnant -, as well as the growth-equilibrium steady states 
for all agents, and thus for all our inequality measures (see footnote 14). 
 
8 In the stagnant steady state, two steady states may exist, but only one is locally stable (see fn. 11) 
 
9 For example, in the log-utility case (σ =1), it can be shown that the share of income devoted to 
both raising children and supporting old parents, vi and wi, must satisfy the equality (1- w1)/v1 = 
(1- wi)/vi to assure equal fertility rates n1=ni in a growth steady state (see fn 15). This condition is 
generally satisfied only if w1=wi and v1=vi. Moreover, if we treat w1 and wi as endogenous 
variables, the fertility rates, n1 and ni, become functions of v1 and vi, respectively, given all other 
parameters. In Appendix C we show that under our heterogeneity restriction, if we set v1=vi, both 
optimal old-age support rates and fertility rates equalize. If we allow a pair of values for v1 and vi 
to be unequal (given all other parameters), however, this cannot generally support an equilibrium 
solution for w1 and wi that also satisfies n1=ni, regardless of the value of σ.  
 
10 As propositions 3 and 4 below indicate, in any stable equilibrium steady state, all families spend 
the same proportion of their potential income on the quantity (vn) and quality (θh) of children. 
Thus all wind up with the same fertility level, despite their different income levels, because in 
equilibrium, a lower income (Yi

t= H i+Hi
t) would be offset by a proportionately lower shadow 

price of fertility ([vi+θihi
t]Yi

t), and the demand for children’s quantity ni becomes a function of the 
ratio of the two. 
 
11 In the log utility case, the SE value of hi(s) has an explicit solution under our heterogeneity 
restriction:  hi(s) = {Ω− [Ω2 − 4(Ai/θi) Si(s)γ vi]1/2}/[2(Ai/θi) Si(s)γ];  where Ω ≡ β − (Ai/θi) Si(s)γ vi, and 
Si(s) ≡ [(A1/θ1)/(Ai/θi)](1/γ). This value of hi(s) is in fact one of two solution candidates that satisfy 
the optimality conditions, but the other solution leads to an unstable equilibrium. The SE value 
ni(s) is given implicitly by [vi+θihi(s)]ni(s) /[δ(1+β)] = 1 − [vi+θihi(s)]ni(s) − wiAihi(s)Si(s)γ.   
 
12 Imposing the condition Aihi(Si)γ = A1h1 (Proposition 1) and equation (10) on equations (6) and 
(7), the first-order conditions with respect to n and θh, and thus the equilibrium rates of return on 
children become identical across all family groups under our heterogeneity restriction. From 
proposition 1 and equation (11), h1/hi = θi/θ1, we then have Si = (A1h1/Aihi)1/γ = (e1/ei)(1/γ). Note that 
the same result holds at the growth equilibrium steady state: the first part of equation (10) holds 
in the limit, or Ei(g) = H1

t/Hi
t, as Hi

t tends to infinity.  
 
13 More specifically, ∂G/∂x = (1−1/Ei)(1−Pi⋅Si) ∂Si/∂x + Si(Pi+1/Ei)2 ∂E/∂x in any equilibrium 
position, where x is one of our parameters. In a stagnant state, a rise in (e1/ei) unambiguously raises 
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Si(s), while not affecting Ei(s). Thus G(s) will rise or fall depending on whether Pi(s)⋅Si(s) is 
smaller or bigger than 1. An increase in H 1/ H i will not affect Si(s) but will raise unambiguously 
Ei(s) and G(s). In a growth steady state, we cannot make symmetrical predictions because an 
increase in (e1/ei), for example, may also affect Ei(g), as our analysis in section III.B indicates. 
 
14 A subtle point about proposition 3 is that it holds strictly under our benchmark case, which 
allows for intergenerational transfers (w>0). If we rely on altruism as the sole operating motive for 
parents (i.e., w=0), it can be shown that the only stable SE steady state requires a corner solution 
in human capital investments, or hi=0, for all family groups (see Appendix B). There are then no 
spillover effects that link family groups 1 and i>1. The family-income inequality would then 
trivially become the endowment ratio in the SE steady state, Ei(s)= H 1/ H i, as is the endogenous 
outcome in our benchmark case, but our income-group inequality index and the Gini coefficient 
would be indeterminable in that state.  
 
15 In the log utility case, the growth steady state values hi(g) and ni(g) have explicit solutions:  
hi(g) = 2vi/[θi(β-1)]; and ni(g) = δ(β-1)(1-wi)/[vi + viδ(β+1)]. 
 
16 There also is the possibility of mixed cases. For example, a technological shock reaches first 
family 1 (case b), but government subsidization of education targets family i (case c). In this case, 
the income inequality paths would have an inverted U shape, but the inequality levels would be 
lower in the growth equilibrium steady state relative to the SE state. Alternatively, if a reduction in 
θi affects family i many periods ahead of family 1, or by a sufficiently greater proportion, so that 
e1/ei actually falls, family i can overtake family 1, and become the “leading family” in terms of 
income-generating capacity. Income inequality will then reach a minimum at the point of 
overtaking, but will rise afterwards until it converges on its GE steady-state level. In this case the 
time path of income inequality will assume an S shape. 
 
17 De Gregorio and Lee (2002) support this expectation. They estimate a positive relationship between 
inequality in educational attainments and income inequality.  
 
18 The Barro-Lee study reports average schooling years for four schooling levels in the population 
age 15 and up (zero, primary, secondary, and higher) and their population shares. We calculate the 
mean and standard deviation of this distribution for each country in all sample years.  
 
19 Also, regression results obtained when using a polynomial of RGDP of the 4th, 5th, and 6th order 
showed the same pattern as in all panels of Figure 3. 



Table 1: Simulating Comparative Dynamic Effects of Parameter Changes in a Two-agent Economy 
Part 1. Stagnant Equilibrium 

A1/θ1 A2/θ2 H 1 B1(B2) v1(v2) w1(w2) γ n1(n2) Y1= H 1+H1 Y2= H 2+H2 E S P=N1/N2 Gini 
2/1 1/1.01 50 .1 .05 .01 .4 6.958 54.905 1.0981 50 5.7993 .1160 .7490 
3/1 1/1.01 50 .1 .05 .01 .4 1.879 453.67 9.0734 50 15.981 .3196 .6989 
3/1 1.5/1.01 50 .1 .05 .01 .4 1.879 453.67 9.0734 50 5.7993 .1160 .7490 
2/1 1.5/1.01 50 .1 .05 .01 .4 6.958 54.905 1.0981 50 2.1045 .0421 .6375 
2/1 1/1.01 60 .1 .05 .01 .4 6.958 65.886 1.0981 60 5.7993 .0967 .7648 
2/1 1/1.01 50 .15 .05 .01 .4 6.999 54.856 1.0971 50 5.7993 .1160 .7490 
2/1 1/1.01 50 .1 .055 .01 .4 6.249 55.597 1.1119 50 5.7993 .1160 .7490 
2/1 1/1.01 50 .1 .05 .015 .4 6.933 54.955 1.0991 50 5.7993 .1160 .7490 
2/1 1/1.01 50 .1 .05 .01 .45 6.958 54.905 1.0981 50 4.7704 .0954 .7396 

Part 2. Growth Equilibrium 
A1/θ1 A2/θ2 B1(B2) v1(v2) w1(w2) γ n1(n2) h1 h2 a1=A1h1 E S P=N1/N2 Gini 
30/1 15/1.01 .1 .05 .01 .4 1.227 .4886 .4837 14.657 50 5.7993 .1160 .7490 
40/1 15/1.01 .1 .05 .01 .4 1.229 .4885 .4836 19.542 113.9 11.905 .1045 .8279 
40/1 20/1.01 .1 .05 .01 .4 1.229 .4885 .4836 19.542 50 5.7993 .1160 .7490 
30/1 20/1.01 .1 .05 .01 .4 1.227 .4886 .4837 14.657 21.9 2.8251 .1290 .6243 
30/1 15/1.01 .15 .05 .01 .4 1.233 .4866 .4818 14.598 50 5.7993 .1160 .7490 
30/1 15/1.01 .1 .055 .01 .4 1.115 .5375 .5321 16.125 50 5.7993 .1160 .7490 
30/1 15/1.01 .1 .05 .015 .4 1.218 .4905 .4856 14.715 50 5.7993 .1160 .7490 
30/1 15/1.01 .1 .05 .01 .45 1.227 .4886 .4837 14.657 41.2 4.7704 .1158 .7229 

Part 3. Takeoff Triggers 
 A1 A2 θ1 θ2 v1(v2) w1(w2) n1(n2) h1 h2 E S P=N1/N2 Gini 

(1)  (SE) 2 1 1 1.01 .05 .01 6.958 .0447 .0442 50 5.7993 .1160 .7490 
      (GE) 30 15 1 1.01 .05 .01 1.227 .4886 .4837 50 5.7993 .1160 .7490 
(2)  (SE) 2 1 1 1.01 .05 .01 6.958 .0447 .0442 50 5.7993 .1160 .7490 
      (GE) 30 1 1 1.01 .05 .01 1.227 .4886 .4837 4.5E+7 5053.6 1.1E−4 .9997 
(3)  (SE) 3 1 1 1.01 .05 .01 1.879 .2966 .2937 50 15.981 .3196 .6989 
      (GE) 3 1 0.5 0.505 .05 .01 1.214 .9771 .9674 50 15.981 .3196 .6989 
(4)  (SE) 3 1 1 1.01 .05 .01 1.879 .2966 .2937 50 15.981 .3196 .6989 
      (GE) 3 1 0.5 0.5 .05 .01 1.214 .9771 .9771 48.5 15.588 .3211 .6967 
(5)  (SE) 4.8 1 1 1.01 .05 .01 3.979 .1150 .1138 50 51.750 1.035 .4724 
      (GE) 4.8 1 1 1.01 .06 .01 1.009 .5865 .5807 50 51.750 1.035 .4724 
(6)  (SE) 4.8 1 1 1.01 .05 .01 3.979 .1150 .1138 50 51.750 1.035 .4724 
      (GE) 4.8 1 1 1.01 .05 .05 1.152 .4964 .4915 50 51.750 1.035 .4724 

Note:  Parameters values that deviate from our benchmark values are presented in bold print. In this table we treat w as exogenous. The comparative dynamic results are found to be qualitatively 
identical to those reported in parts 1 and 2 when we  treat w as endogenous, using the analysis in Appendix C. 
Part 1. Comparative dynamics in the stagnant steady state are simulated by changing A1/θ1, A2/θ2, H 1, B1(=B2), v1(=v2), w1(=w2), or γ, holding constant the values of all other parameters: H 2 = 
1, σ = 0.98, δ = 0.9, β = 1.2, and α = 1.  
Part 2. Comparative dynamics in the growth steady state are simulated by changing A1/θ1, A2/θ2, B1(=B2), v1(=v2), w1(=w2), or γ, holding constant  σ = 0.98, δ = 0.9, β = 1.2, and α = 1. 
Part 3. Simulations show the impact of uniform (proportionate) and non-uniform changes in Ai and θi, as well as in the common levels of v1=vi and w1=w2 at both the SE and GE steady states, 
holding constant: H 1 = 50, H 2 = 1, σ = 0.98, δ = 0.9, γ = 0.4, β = 1.2, α = 1, and B1 =B2 = 0.1.  



 
Table 2  Fertility Inequality Regressions 

 
Dependent Variable: SD_FERT 

 Model 1 Model 2 Model 3 Model 4 Model 5 

 OLS Country  
Random Effects 

Country  
Random Effects 

Country  
Random Effects 

Country RE 
& Year Dummies 

      
Intercept 1.776852 2.087804 2.165747 2.181626 1.162350 
 7.45 10.54 9.72 10.53 2.94 

RGDP 0.000410 0.000249 0.000235 0.000270 0.000376 
 2.23 1.59 1.49 1.83 2.27 

RGDP2 -8.49E-08 -5.75E-08 -5.62E-08 -5.59E-08 -8.13E-08 
 -1.90 -1.60 -1.56 -1.66 -2.13 

RGDP3 5.08E-12 3.40E-12 3.40E-12 3.25E-12 5.07E-12 
 1.64 1.44 1.44 1.47 2.00 

AV_FERT 0.056786 0.042325 0.046133 0.134551 0.180190 
 1.88 2.14 2.27 4.18 3.84 

GOV   -0.003653 -0.004215 -0.005115 
   -0.69 -0.87 -1.00 

T    -0.013374  
    -3.46  

      
Adj. R2 0.0854 0.1637 0.1959 0.2824 0.4373 
N 72 72 72 72 72 
Notes: The dependent variable is the standard deviation of the distribution of surviving children per woman age 40 and over. Data sources are the World Fertility 
Surveys and the Demographic and Health Surveys (various years). Rows show the estimated coefficients (β) and their t-statistics (β/Sβ).  This table’s regressions 
employ a random effects specification to account for missing idiosyncratic variables, because the number of observations per country is small. No serial 
correlation correction is needed, since the Cochran-Orcutt test rejects the existence of an AR(1) serial correlation in Model 3. 
 



 
Table 3.  Education Attainment Inequality Regressions 

 
Dependent Variable: SD_SCHYR 

 Model 1 Model 2 Model 3 Model 4 Model 5 

 OLS Country  
Fixed Effects 

Country  
Fixed Effects 

Country  
Fixed Effects 

Country& Year 
Fixed Effects 

      
Intercept 2.634408 2.074857# 1.957999# 2.512515# 2.837973# 
 37.43     

RGDP 9.29E-05 -3.79E-05 -3.13E-05 -4.36E-05 -5.95E-05 
 2.71 -1.02 -0.84 -1.32 -1.75 

RGDP2 -1.20E-08 4.29E-09 4.01E-09 2.75E-09 3.34E-09 
 -3.79 1.48 1.39 1.07 1.29 

RGDP3 3.03E-13 -1.59E-13 -1.54E-13 -1.19E-13 -1.24E-13 
 3.48 -2.21 -2.15 -1.87 -1.94 

AV_SCHYR 0.205215 0.351542 0.342305 0.111584 0.115726 
 11.97 18.40 17.66 4.50 4.59 

GOV   0.006915 0.000617 -0.000855 
   2.51 0.25 -0.33 

T    0.029080  
    12.92  

      
Adj. R2 0.3320 0.4891 0.4943 0.6022 0.6070 
N 721 721 721 721 721 
Notes: The dependent variable is the standard deviation in the distribution of schooling years attained in the population age 15 and over. The data source is Barro 
and Lee (2000). Rows show the estimated coefficients (β) and their t-statistics (β/Sβ). # The Intercept coefficients represent mean values of all intercept terms.  
No serial correlation correction is needed, since data on the dependent variable are available every five years and the Cochran-Orcutt test rejects the existence of 
an AR(1) serial correlation in Model 3. 



 
Table 4.  Income Inequality Regressions: GINI 

 
Dependent Variable: GINI 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 OLS Country  
Fixed Effects 

Country  
Fixed Effects 

Country  
Fixed Effects 

Country& Year 
Fixed Effects 

OLS 

       
Intercept 41.948920 35.729530# 40.193390# 39.392580# 58.906320# 42.198848 
 26.34     28.69 

RGDP 0.001583 0.001095 0.000873 0.001081 0.001077 0.001645 
 2.94 2.62 2.02 2.03 1.85 3.28 

RGDP2 -2.45E-07 -1.08E-07 -9.47E-08 -1.04E-07 -1.01E-07 -2.54E-07 
 -5.22 -3.54 -3.00 -3.00 -2.68 -5.79 

RGDP3 7.04E-12 2.81E-12 2.51E-12 2.70E-12 2.61E-12 7.27E-12 
 5.96 3.99 3.43 3.43 3.05 6.61 

GOV   -0.181998 -0.170141 -0.216757  
   -2.19 -2.00 -2.22  

T    -0.027090   
    -0.66   

       
Adj. R2 0.4108 0.0691 0.0916 0.0932 0.2248 0.4691 
N 318 318 310 310 310 305 
Notes: The dependent variable is the GINI coefficient, based on household income data. The data source is Dollar and Kraay (2001). Rows show the estimated 
coefficients (β) and their t-statistics (β/Sβ).  # Coefficient represents the mean value of the intercept term. No serial correlation correction is needed, since the 
Cochran-Orcutt test rejects AR(1) serial correlation in Model 3. 
 



 
Table 5.  Income Inequality Regressions: QUINT 

 
Dependent Variable: QUINT 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

 OLS Country 
Fixed Effects 

Country 
Fixed Effects 

Country 
Fixed Effects 

Country & Year 
Fixed Effects 

OLS 

       
Intercept 9.110258 4.513832# 2.445769# 2.290842# 25.019580# 9.167456 
 7.52     7.67 

RGDP 0.001440 0.001294 0.001437 0.001478 0.001313 0.001498 
 3.47 3.82 4.10 3.37 2.76 3.61 

RGDP2 -1.80E-07 -1.00E-07 -1.13E-07 -1.15E-07 -1.07E-07 -1.87E-07 
 -4.92 -3.98 -4.30 -3.95 -3.43 -5.11 

RGDP3 4.97E-12 2.32E-12 2.65E-12 2.69E-12 2.55E-12 5.13E-12 
 5.34 3.96 4.30 4.02 3.55 5.54 

GOV   0.101228 0.103520 0.077167  
   1.51 1.50 0.99  

T    -0.005237   
    -0.16   

       
Adj. R2 0.2498 0.0663 0.0787 0.0788 0.2278 0.2695 
N 289 289 281 281 281 276 
Notes: The dependent variable is the share of total income received by the top, relative to the bottom, quintile of families in the population. The data source is Dollar 
and Kraay (2001), and only household income data are used. Rows show the estimated coefficients (β) and their t-statistics (β/Sβ).  # Coefficient represents the 
mean value of the intercept terms.  No serial correlation correction is needed, since the Cochran-Orcutt test rejects AR(1) serial correlation in Model 3. 
 
 



Figure 1.  Simulated time paths when a uniform shock affects family 1 ahead of family 2 
in the two-family case 

 
a. Fertility (n) and Human Capital Investment Cost Share (θh) b. Income-Group Inequality (S) and  

Family-Income Inequality (E) 

  
c. Gini Coefficient (G) d. Inequality in Fertility and  

Inequality in Human Capital Investment Cost Share 

  
 
Note: Parameter values used in these simulations are: θ1=1, θ2=1.01, H1

0=50, H2
0 = 1, B1=B2=0.1, w1=w2=0.01, v1=v2=0.05, γ = 0.4, σ = 0.98, 

δ = 0.9, β = 1.2, α = 1. Prior to period 1, the economy is in a stable SE steady state, with A1=2 and A2=1. In period 1, family 1 alone 
experiences a once-and-for-all permanent increase in A1 to 30. In period 2, family 2 also experiences an equi-proportional increase in A2 to 15.  
 



 
Figure 2.  Simulated time paths when a uniform shock affects family 2 ahead of family 1 

in the two-family case 
 

a. Income-Group Inequality (S) and  
Family-Income Inequality (E) 

b. Gini Coefficient (G) 

  
c. Inequality in Fertility and  

Inequality in Human Capital Investment Cost Share 
 

 

 

 
Note: Parameter values used in the simulations for Figure 2: A1=2, A2=1, H1

0=50, H2
0 = 1, B1=B2=0.1, w1=w2=0.01, v1=v2=0.05, γ = 0.4, σ = 

0.98, δ = 0.9, β = 1.2, α = 1. Prior to period 1, the economy is in a stable SE steady state with θ1=1 and θ2=1.01. In period 1, family 2 alone 
experiences a once-and-for-all reduction in θ2 to 1.01/15. In period 2, family 1 then experiences an equi-proportional reduction in θ1 to 1/15.  
 



 

Figure 3.  Fitted Lines from the Regression Results 
 

a. Mean-adjusted Fertility Inequality (SD-FERT) b. Mean-adjusted Educational Attainment Inequality  
(SD-SCHYR) 

  
c. Gini Coefficient (GINI) d. Quintile Ratio (QUINT) 

  
 
Note: Panels a, b, c, and d are based on the regression results of Model 1 in Tables 2 and 3, and Model 6 in Tables 4 and 5, 
respectively. The RGDP values on the x-axes of all panels cover 90% of the observations on RGDP used in our regressions.   
 
 


